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Invasive plants, such as aquatic macrophytes, pose environmental challenges that 
require immediate attention, as they can cause considerable economic and social-
ecological damage if left to spread. The invasion of Salvinia molesta (S.molesta) 
along the Gulf of Mwanza, Lake Victoria, was recently reported. Thus, this study 
focused on detecting and monitoring its presence in the Gulf of Mwanza waters, 
quantifying the extent of infestation, monitoring its spatiotemporal distribution 
from 2020 to 2025, and identifying the hotspots. The study applied a remote 
sensing technique using multispectral imagery from Sentinel-2, a Support Vector 
Machine, coupled with freely available high-resolution imagery delivered by Google 
Earth Pro. Three classes, namely water, S.molesta, and built-up areas, were 
employed in the analysis, which yielded satisfactory findings with overall accuracy 
metrics consistently exceeding 98.5% and Kappa coefficients greater than 0.985, 
confirming the reliability of the methodology for the operational detection of 
S.molesta invasion along Lake Victoria. The results revealed an alarming increase in 
S.molesta infestation along the Gulf of Mwanza, with approximately 7.72 km² 
coverage portraying a 60.3% increase over the past five years. Moreover, the edges 
of the Kigongo-Busisi Bridge were identified as highly significant hotspot locations 
for S.molesta infestation. These hotspots were aligned with field observations, 
suggesting an existing link to potential nutrient-rich runoff originating from 
adjacent agricultural and residential areas. This study has generated vital 
information for the responsible authorities to institute management strategies 
geared towards combating the escalation of S. S.molesta invasion in Lake Victoria. 

 

1. Introduction 

Salvinia molesta (S.molesta) is an aquatic weed, 
free-floating fern that originates from Brazil and 
is grouped as a macrophyte, which is ranked 
second behind water hyacinth on a list of the most 
harmful aquatic weeds globally(Luque et al. 2014, 
Sigel et al., 2025). S.molesta is characterized by its 
rapid growth rate, and has been reported to 
invade many other freshwater areas, particularly 
warm freshwater around the world (Coetzee and 
Hill, 2020; Herbert et al., 2024; Johnson et al. 
2010). Therefore, the South African government 
declared S.molesta molesta to be among the worst 
free-floating weeds in water during the 1960s, 
highlighting its annoying characteristics (Martin 
et al., 2018). S.molesta exhibits denser mats, rapid 
growth as biomass, and strong accumulation 
capabilities on water surfaces, such as lakes, 
rivers, and other waterlogged places (Chavula et 
al., 2023; Singh et al., 2021). S.molesta has 
intensive and highly invasive characteristics that 

have serious impacts on its economy, ecology, 
culture, and other long-term consequences (Lee, 
2001; Woodley et al., 2025). Moreover, a denser 
mat of S. molesta plants creates a physical barrier 
above the water surface, blocking water 
transportation systems, restricting access to 
fishing sites, and disrupting recreational 
activities, thus negatively impacting tourism 
(Makhabu et al., 2024; Retnamma et al., 2023; 
Wahl et al., 2020). Similarly, water hyacinth, 
particularly pontederia crassipes 
(pontederiaceae), has been reported to hamper 
fishing activities for local communities in Lake 
Victoria in Uganda in 1989 (Mailu, 2001). 
Moreover, these species also threaten 
approximately 30 million people through the loss 
of fisheries, impeding water transportation and 
electricity production, coupled with reduced 
flows of other ecosystem services (Aloo et al., 
2013). 
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Denser mats of S.molesta  block direct sunlight 
from reaching submerged native macrophytes, 
thereby hampering photosynthesis, which is 
essential for plant growth of these plants (Everitt 
et al., 2008). When submerged, native 
macrophytes cannot perform as much 
photosynthesis, leading to depletion of dissolved 
oxygen in the water (Andama et al., 2017; Lal, 
2016) which influences the rise of carbon dioxide 
(CO2) and hydrogen sulfide (H2S) gas levels, 
resulting in a decrease in water pH (Van Driesche 
et al., 2010) This creates an unfavourable 
environment for the survival of other aquatic 
living organisms, particularly fishes (Dibble, 
2009). Furthermore, the high affinity of S.molesta 
for sequestering nutrients leads to nutrient 
competition with native macrophytes, thereby 
disrupting their existence in the food web. In turn, 
this can negatively affect the food system and 
reduce habitat suitability for native invertebrates 
(Van Driesche et al., 2010). These changes in 
biochemical processes can create an unsuitable 
environment for native plants, leading to the 
death of native macrophytes, which in turn can 
eliminate the foundation for the native aquatic 
food web, with far-reaching direct effects on the 
survival of herbivores and predators (Van 
Driesche et al., 2010). 
A study by Andama et al. (2017) in Lake Kivu in 
Rwanda established a positive correlation 
between phosphate levels and the abundance of 
the invasive fern S.molesta. This research 
highlighted that eutrophication, driven by high 
nutrient loads of phosphorus and nitrogen, 
creates ideal conditions for the proliferation of 
invasive aquatic macrophytes. This situation is 
exacerbated by urbanization, the intensification 
of industrial production, and agricultural 
activities (Retnamma et al., 2023). These 
processes have been considered one of the main 
sources of pollution due to improperly treated 
wastewater and agricultural runoff, resulting in 
nutrient-enriched water bodies (Coetzee and Hill, 
2012). 
To contain the invasion of weeds into water 
bodies, the establishment of monitoring systems 
is of paramount importance for enhancing 
control and obtaining detailed knowledge of their 
local spatial distribution and temporal dynamics 
in terms of percent cover, rate of change, and 
dynamics. However, in large expanses of water 
bodies, such as those of Lake Victoria, 
implementing classification with hyperspectral 
data, ground inventory, and assessment is 
difficult, time-consuming, and expensive (Dao et 
al., 2021). For decades, remote sensing 
technology has offered timely, affordable, and 
reliable acquisition of remote-sensed datasets at 
generally lower costs than conducting ground 
surveys (Pottier et al., 2021). 

The invasion and rapid spread of aquatic weeds, 
such as Salvinia molesta, present a serious 
challenge to numerous sectors, creating a critical 
need for effective early detection and monitoring 
systems to guide control strategies. However, 
rapid detection and mapping of the distribution 
and status of S. molesta remains a significant 
challenge. This is often due to a lack of historical 
data, low resolution or poor quality of available 
data acquisition methods, and the highly dynamic 
nature of the plant itself. Recent reports have 
revealed a new invasion of S. molesta into the 
Mwanza Gulf of Tanzania, particularly along the 
Kigongo–Busisi area. This development 
underscores the urgent need for dedicated 
studies to establish the magnitude and extent of 
infestation. 
Obtaining and maintaining up-to-date 
information on S.molesta distribution has been 
identified as one of the main challenges in 
S.molesta control. Over the past four decades, 
remote sensing has proven to be among the most 
appropriate technologies, and its methodologies 
have been well established for monitoring 
vegetation cover and other land use/cover 
(Abebe et al., 2022; Karanam et al., 2021; Wu et 
al., 2020). Monitoring vegetation and water 
bodies with complex optical properties requires 
high-resolution images which is currently 
achieved through use of Sentinel-2 imagery (Qing 
et al., 2021). On the other hand, Google Earth 
Engine has powerful algorithms for filtering and 
pre-processing satellite and multispectral 
images. Sentinel-2 imagery has also made remote 
sensing technology more useful for finding 
objects worldwide (Ragheb and Ragab, 2015; 
Yang et al., 2021; Zurqani et al., 2018). Performing 
classification detection and segmentation of 
objects requires algorithms such as Support 
Vector Machines (SVM). The SVM is an old 
method that has been extensively used for tuning 
machine learning models with outstanding 
performance and ease of use (Hamdi et al., 2022).  

The objectives of this study were: 1) to quantify 
the spatiotemporal extent and spread rate of 
Salvinia molesta in the Mwanza Gulf within a 20 
km buffer from 2020 to 2025 using Sentinel-2 
imagery and remote sensing; 2) to identify and 
map persistent infestation hotspots through 
Getis-Ord Gi* spatial analysis, highlighting 
priority areas for targeted control. 

2. Materials and Methods  
2.1. The Study Area 
The Gulf of Mwanza is one of the largest gulfs on 
the southern part of the Tanzanian side of Lake 
Victoria (Figure 1). It is approximately 60 km long 
and 2.5 to 11 km wide (Mabula et al., 2023). The 
Gulf is located in the vicinity of Mwanza City in 
northwest Tanzania. The Gulf of Mwanza was 
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selected as the study site due to a recently 
reported case of S. S.molesta invasion. 
Furthermore, this area is considered to be the 
most ecologically important area of Lake Victoria 
(Mabula et al., 2023). On the other hand, the 
Kigongo-Busisi Bridge has been constructed 
along the Gulf of Mwanza, which connects the 
Misungwi and Sengerema Districts. This bridge 
may act as a barrier to restrict the flow of 
nutrients along the Gulf, thereby creating a 

conducive environment for the growth of 
S.molesta. The Gulf also hosts other socio-
economic activities, such as agriculture, fish cage 
aquaculture, industries, and trade, which may 
influence the release of nutrients in the lake. The 
analysis for this study focused solely on the 
water-covered areas of the Gulf and was confined 
to the extending radius of 15 km from the centre 
of the Kigongo – Busisi Bridge. Therefore, the 
total coverage area under study was 31,655.96 ha. 

Figure 1: Map of Tanzania illustrating Gulf of Mwanza in Lake Victoria that connects Kigongo - Busisi 
Bridge. Source: Mabula et al.(2023). 

2.2. Data preparation  

In this study, remotely sensed datasets of 
Sentinel-2 imagery, a medium-resolution (10m) 
satellite imagery, were used to classify objects 
within a Mwanza Gulf. All data collection 
procedures were conducted using Google Earth 
Engine (GEE). GEE is a cloud-based computing 
platform embedded with multiple data 
catalogues that archives diverse, consistent, and 
timely geospatial datasets, including the 
complete set of Sentinel-2 data (Zhang et al., 
2021). The GEE allows users to prepare and test 
datasets before further analysis, and it allows the 
filtering of images based on date, band 
separability, pixel quality, cloud masking, and 
geometric collection under semi-automatic 
experiments (Adam and Heeto, 2018; Daldegan et 
al., 2019; Saah et al., 2019). Sentinel-2 imagery is 
freely downloadable data available in GEE 
(Pottier et al., 2021), which has a revisit time of 
five (5) days (Campos-Taberner et al., 2020) and 
has 10 years of operation. Based on these criteria, 

Sentinel-2 imagery is ideal for detecting S.molesta 
invasions in the Gulf of Mwanza. Therefore, a set 
of Sentinel-2 surface reflectance (Level-2A) 
images was obtained from the Copernicus Open 
Data Hub in GEE. The obtained Sentinel-2 dataset 
was filtered for cloud-free conditions, which was 
set as ≤ 10% cloud cover, and a specified temporal 
time was set between January 1st and March 30th, 
for all analysis years (2020, 2021, 2022, and 
2025), and single-date imagery was avoided (Noi 
Phan et al., 2020), to ensure consistency and 
optimal classification accuracy. Subsequently, the 
images were clipped to the study area shapefile 
and visualized using a false-colour composite 
(Bands B8, B4, and B2) to highlight water and 
vegetation features. This procedure was 
processed within the Google Earth Engine and 
was tested before the final export for analysis in 
ArcGIS 10.8 (Zhang et al., 2021). The collected 
images were then exported to the Google Drive 
Platform, which was then downloaded to proceed 
with further analysis in ArcGIS desktop version 
10.8. Table 1 lists the datasets used in the study. 
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Table 1: Details of sentinel-2 imagery used for classification (2020-2025) 

S/N Year Sensor Acquisition Period Cloud Cover Filter 
(%) 

Resolution (m) 

1 2020 Sentinel-2 Jan 1 - Mar 30 < 10 10 

2 2021 Sentinel-2 Jan 1 - Mar 30 < 10 10 

3 2022 Sentinel-2 Jan 1 - Mar 30 < 10 10 

4 2025 Sentinel-2 Jan 1 - Mar 30 < 10 10 

2.3. Training samples collection 

One prerequisite for the collection of training 
samples is the selection of homogeneous objects 
that reflect similarly (Yang et al., 2021). Training 
samples are essential for supervised 
classification. Supervised classification requires a 
large amount of field data, which obtaining field 
data is time consuming and labour intensive, 
particularly when dealing with large study areas 
(Saah et al., 2019). Recent improvements in 
remote sensing and advancements in cloud 
computing technologies have overcome these 
challenges regarding the availability of high-
resolution images (Saah et al., 2019). These 
platforms have facilitated the availability of 
homogeneous training samples from various 
sources (Yang et al., 2021). For example, recent 
interventions such as Open Foris 
(https://openforis.org/) have allowed users to 
collect training samples using high-resolution 
images and ancillary datasets, thereby reducing 
cost and time and releasing more reliable 
datasets worldwide (Koskinen et al., 2019). 
Similarly, platforms such as Google Earth Pro, 
Bing maps, and other open-source remote 
sensing platforms have enhanced users to collect 
and apply training samples for supervised 
classification (Koskinen et al., 2019; Ragheb and 
Ragab, 2015). Similarly, in this study, training 
samples were collected using multiple sources, 
such as Open Foris within Google Earth Pro and 
Sentinel-2 imagery, particularly when the Google 
Earth Pro updated image was found. All training 
samples were subsequently digitized and the 

saved Keyhole Markup Language (KML) files 
were exported to ArcGIS 10.8 for further 
processing (Cho and Ramoelo, 2019). 

2.4. Validation analysis   

The assessment of classified thematic maps is a 
difficult task because it involves the analysis of 
the model’s validity and the accuracy of the 
results ( Khaliq et al., 2023). According to Khaliq 
et al. (2023), statistical tests usually substantiate 
the randomly selected training samples used to 
classify thematic rasters and the produced raster 
values. The most trusted and standard statistical 
tests commonly applied for testing classification 
tasks are the metrics derived from the analysis of 
confusion matrices (Johnson and Jozdani, 2020; 
Tassi and Vizzari, 2020). The confusion matrix 
table is usually coupled with other metrics, 
including the Overall Accuracy (OA), Producer’s 
Accuracy (PA), User’s Accuracy (UA), and Kappa 
Coefficient (K), which can be applied to identify 
potential sources of error (Biondini and Kandus, 
2006; Pan et al., 2021; Zomlot et al., 2017). In this 
study, only the Overall Accuracy (OA) and Kappa 
Coefficient (K) were adopted for classification 
validation analysis (Equations 1 – 4). The 
procedure for conducting validation analysis was 
performed to assess the Support Vector Machine 
(SVM)'s accuracy in classifying thematic maps for 
each study period (2020, 2021, 2022, and 2025) 
using 40% of the collected samples. A total of 300 
validation points were involved in the validation 
process, which were equally distributed across 
three classes: 100 for water, 100 for S.molesta 
weeds, and 100 for built-up areas.  

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
… … … … … … … … … … … … … … … … . … . . (1)  

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑐𝑙𝑎𝑠𝑠 𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖
… … … … … … . . … … … . (2)  

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠 𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖
… … … … … … … . . … … … . … . . (3)  

𝐾 =
𝑃0 − 𝑃𝑒

1 + 𝑃𝑒
… … … … … … … … … … … … … … … … … . … … … . … … … … … … … . . … … … … … … … … . (4) 

Where:  
𝐾 = Kappa coefficient, ranging from −1 to +1, 
where +1 indicates perfect agreement, 0 indicates 
no agreement beyond chance, and negative values 
indicate agreement worse than chance. 
P₀ = Observed agreement (also called overall 
accuracy), representing the proportion of 

correctly classified samples in the confusion 
matrix. It is computed as:   P₀ = (Σ xᵢᵢ) / N, where 
xᵢᵢ is the number of correctly classified samples 
for class i (the diagonal elements of the confusion 
matrix), r is the total number of classes, and N is 
the total number of samples. 

https://openforis.org/
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Pₑ = Expected agreement by chance, calculated 
from the row and column totals of the confusion 
matrix. It is computed as:   Pₑ = Σ (xᵢ₊ × x₊ᵢ) / N², 
where xᵢ₊ is the total number of reference 
samples in class i (row total), and x₊ᵢ is the total 
number of classified samples in class i (column 
total). 

2.5. Support Vector Machine (SVM) 
Classification 

In this study, Sentinel-2 satellite imagery was 
classified using a Support Vector Machine (SVM) 
algorithm implemented in ArcGIS 10.8. SVM is a 
supervised machine learning classifier that is 
widely recognized for its robustness in handling 
complex, high-dimensional datasets and its 
ability to define nonlinear decision boundaries, 
thereby making it particularly suitable for diverse 
remote sensing classification tasks (Pottier et al., 
2021; Qiao et al., 2020; Zhao et al., 2021). The 
classification process was conducted within 
ArcGIS 10.8 environment, which enabled the 
processing of satellite imagery and integration-
referenced training datasets. The classifier was 
trained using 60% of the reference data, ensuring 
that the model was exposed to representative 
samples of each target land-cover category: open 
water, Salvinia molesta, and built-up areas. Four 
Sentinel-2 spectral bands, B2 (blue), B3 (green), 
B4 (red), and B8 (near-infrared), were selected as 
the input spectral bands for SVM classification. 
These bands were chosen because of their 
effectiveness in discriminating between aquatic 
vegetation, open water, and urban surfaces. The 
SVM algorithm was selected based on its proven 
capability to model complex nonlinear 
relationships between spectral responses and 
land-cover classes (Al-Najjar and Pradhan, 2021; 
Ge et al., 2020). Following the training phase and 
parameter optimization for each study year, the 
configured SVM model was applied to the 
respective pre-processed Sentinel-2 composite 
image covering the Mwanza Gulf. The procedure 
generated thematic classification maps 
delineating the spatial distribution of open water, 
Salvinia molesta, and built-up areas for 2020, 
2021, 2022, and 2025. 

2.6. Hotspot analysis  

The Getis–Ord Gi* statistic was employed to 
identify statistically significant spatial clustering 
of S. molesta density within the Gulf of Mwanza. 
This spatial statistical method evaluates whether 
high or low values of a variable cluster in space 
are more than would be expected under a random 
distribution (Getis and Ord, 1992). The analysis 
was implemented using ArcGIS Desktop. The 
output included the GiZScore, GiPValue, N-
Neighbours, and Gi-Bin for each grid cell 
representing S. molesta density. GiZScore is a 

standardized value that measures the intensity 
and direction of clustering. High positive scores 
indicated hot spots, whereas high negative scores 
indicated cold spots. GiPValue quantifies the 
probability that observed clustering occurs by 
random chance(Getis and Ord, 1992). This value 
provides a measure of statistical significance. The 
N-Neighbours field records the number of 
surrounding cells included in each local sum. This 
influenced the spatial context of the analysis. The 
Gi-Bin field classifies results into categories of 
statistical confidence. Scores of +3 and +2 
indicate hotspots at 99% and 95% confidence 
levels, respectively. The scores of −3 and −2 
indicate cold spots at the same confidence 
thresholds. Cells with a Gi-Bin value of 0 were 
considered to be not statistically significant, 
indicating that the spatial pattern could be 
random. Hot spots were defined as locations with 
S. molesta density significantly clustered at Gi-Bin 
levels of +2 or +3. Cold spots were defined as 
locations with Gi-Bin levels of −2 or −3 (Getis and 
Ord, 1992). This classification allowed for the 
identification of areas with the highest 
concentration of invasive weeds. This enabled 
further spatial interpretation of the invasion 
patterns within the Gulf of Mwanza. 

3. Results 
3.1. Temporal Dynamics of S. molesta Invasion 
(2020-2025) 
The analysis of Sentinel-2 imagery using remote 
sensing classification techniques of a Support 
Vector Machine (SVM) has revealed distinct 
temporal trends of classified categories of 
S.molesta aquatic plants, water, and built-up areas 
within the Gulf of Mwanza between 2020 and 
2025. The quantitative results of these classes 
(S.molesta , water, and built-up) detailing the area 
coverage in hectares (ha) and the corresponding 
percentage for each class are presented in Table 
2, whereas the spatial distribution maps are 
presented in Figure 2. The overall results of this 
study revealed a noticeable increase in the area 
covered by S.molesta molesta. In 2020, S.molesta 
occupied 277 ha, representing 1.07% of the study 
area, while it increased to 291.88 ha (1.13%) in 
2021 and 295.13 ha (1.14%) in 2022. This trend 
represents a total increase of 18.13 ha of 
S.molesta over the two (2) year monitoring 
period. Concurrently, the area classified as water 
showed fluctuations but an overall decrease by 
2022. In 2020, water covered 25600.37 ha 
(98.74%), slightly increased to 25616.73 ha 
(98.80%) in 2021, and then decreased to 
25482.43 ha (98.28%) by 2022, implying the 
overall decline between 2020 and 2022 was 
117.94 ha. The area covered by built-up areas 
showed variability, ranging from 51 ha (0.20%) in 
2020 to 150.81 ha (0.58%) in 2022. In the final 
year of analysis, the estimated area for the 
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S.molesta class in 2025 was 1651.74 ha, 
constituting 6.37% of the study area, indicating a 
dramatic acceleration of S.molesta invasion. The 
dramatic acceleration of the S.molesta invasion 
represents an estimated increase of 1356.61 ha 
from 2022 to 2025 alone, which is significantly 
larger than the total increase observed over the 
preceding two years (2020-2022). Moreover, the 
findings suggest an accelerating invasion rate, 
which is characteristic of invasive species 

entering an exponential growth phase under 
favourable conditions. Correspondingly, the 
analysed open water area in 2025 was estimated 
to decrease sharply to 24247.44 ha (93.52%). The 
analysed loss of 1234.99 ha of open water 
between 2022 and 2025 underscores the 
potential scale of habitat transformation driven 
by the S.molesta expansion. The built-up area 
results show a decrease to 29.19 ha (0.11%) in 
2025 compared to 0.58 ha in 2022. 

Table 2: Coverage of S.molesta, water, and built-up areas in hectares (ha) and percentage (%) from 
2020 to 2025 in the Gulf of Mwanza. 

Class Name 

Year - 2020 Year - 2021 Year - 2022 Year – 2025 

Area (ha)  %  Area (ha)  %  Area (ha)  %  Area (ha)  %  

S.molesta 277 1.07  291.88 1.13  295.13 1.14  1651.74 6.37  

Water 25600.37 98.74  25616.73 98.80  25482.43 98.28  24247.44 93.52  

Built-Up 51 0.20  19.76 0.08  150.81 0.58  29.19 0.11  

Total  25928.37 100  25928.37 100  25928.37 100  25928.37 100  

 

 
Figure 2: Spatial distribution of water, S.molesta and built-up areas in the gulf of Mwanza 
for (a) 2020, (b) 2021, (c) 2021, and (d) 2025, based on sentinel-2 SVM classification.  
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3.2. Spatial Distribution of S.molesta Hotspot 
for the year 2025 
The Getis-Ord Gi* hotspot analysis revealed 
spatial clustering patterns of Salvinia molesta 
density across the Mwanza Gulf, as illustrated in 
the map in Figure 3. The overall distribution was 
predominantly random, with a majority of the 
areas showing no statistically significant 
clustering (Gi-Bin = 0). However, the analysis 
successfully identified distinct and localized 
areas of statistically significant high-density 
clusters (hotspots) and low-density clusters (cold 
spots), as shown in Table 3 and the analysed 
hotspots maps representing typical dense mats of 
S.molesta  are presented in Figure 4. Two primary 

hotspots (Gi-Bin ≥ +2) were identified, indicating 
areas with a significant accumulation of S. 
molesta. The first and most concentrated 
hotspots were located at and near the edges of the 
Kigongo-Busisi bridge area, which exhibited the 
highest S. molesta density. A second hotspot 
forming a distinct linear pattern was identified 
directly along the main ferry transport route 
connecting Kigongo and Busisi. 
In addition to high-density clusters, the analysis 
also identified several statistically significant cold 
spots (Gi-Bin ≤ −2). These locations represent 
areas where the analysed density of S. molesta 
was significantly lower than the regional average.  
 

Table 3: Hotspots values for GiP-Value, N-Neighbours, Gi-Bin values, and Giz-Score 
Hotspots  GiP-Value  N-Neighbours  Gi-Bin values  Giz-Score 

Class 1 0.0 – 0.570 1 – 11 0 -0.095 – 2.796 

Class 2  0.571 – 0.957  12 – 24 1 – 2 2.797 – 13.173 

Class 3  0.958 – 1.000 25 – 41  3 13.174 – 28.115  

 
Figure 3: Analysed hotspots maps representing (a) GiZ-Score (b) GiP-Value, (c) Gi-Bin and (d) N-
Neighbours values corresponding to areas identified as hotspots. 
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Figure 4: Field photographs illustrating typical dense mats of S.molesta observed in Gulf of Mwanza 
during (March 2025), corresponding to areas identified as hotspots or high-density infestations in 
the remote sensing analysis. (a) – (d) Extensive surface cover observed near the Kigongo-Busisi 
Bridge. (e) Indicates the removed S.molesta (f) A close-up showing the characteristic leaf structure 
and density of the mats of S. molesta. 

 
3.3. Classification Accuracy 

The study evaluated the SVM classification mode 
using overall accuracy and Kappa coefficient. The 
study revealed very high levels of accuracy for all 
study years. The overall validation accuracy 
ranged from 98.52% in 2020 to 99.98% in 2025. 
The corresponding kappa coefficients were 
consistently high, starting at 0.985 in 2020 and 
reaching 0.998 by 2025. These Kappa values 
signify almost perfect agreement between the 
classification results and validation data, 
according to established interpretation 
benchmarks (Khaliq et al., 2023; Long et al., 
2021), confirming the high fidelity of the mapping 
results.  

4. Discussion of the Results 

4.1. Ecological and Socio-economic 
Implications of temporal and spatial 
dynamics of S.molesta Proliferation  

The results of the temporal analysis indicated the 
status of S.molesta its invasion in the Gulf of 
Mwanza between 2020 and 2025. Overall, the 
results indicated a total increase in S.molesta in 

the study area during the study period. Moreover, 
the study highlighted a dramatic acceleration in 
S.molesta by 2025. This estimated exponential 
increase in detected S.molesta along the Gulf of 
Mwanza aligns with the known biological 
characteristics of other Salvinia species, such as 
those of S. molesta (Mailu, 2001; Ot et al., 2011). 
S. molesta is notorious for its rapid vegetative 
reproduction (Range, 2020). Under optimal 
conditions, often found in nutrient-rich tropical 
waters, such as Lake Victoria, S. molesta can 
double its biomass in as little as days (Martin et 
al., 2018), enabling it to rapidly colonize vast 
areas (Everitt et al., 2008). The analysed rate of 
expansion in the Gulf of Mwanza suggests that 
conditions are highly favourable for such rapid 
proliferation. S. molesta is globally recognized as 
one of the most problematic invasive aquatic 
plants, ranking second only to the water hyacinth 
(Eichhornia crassipes) in terms of negative 
impacts (Herbert et al., 2024). The successful 
invasion of diverse aquatic ecosystems across 
Africa, Asia, Australia, and the Americas serves as 
a stark precedent (Everitt et al., 2008; Martin et 
al., 2018). The formation of thick, impenetrable 
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mats, sometimes exceeding a meter in depth, is a 
hallmark of severe infestation (Range, 2020). The 
analysed 2025 scenario for the Mwanza Gulf, with 
S.molesta potentially covering 6.37% of the study 
area, suggests a trajectory towards such mat 
formation. This represents more than just an 
increase in weed cover, signifying a potential 
ecological regime shift in the affected parts of the 
Gulf, transitioning from open-water systems to 
ecosystems dominated by a dense, floating 
invasive macrophyte layer (Range, 2020). Such 
shifts fundamentally alter ecosystem structure 
and function, with cascading consequences for 
biodiversity and ecological processes (Mayfeld III 
et al., 2021). 
The rapid timeline indicated by the analysis is a 
substantial increase anticipated within just three 
years (2022-2025), underscoring the critical 
importance of timely intervention. Reactive 
management strategies, often implemented only 
after impacts become severe, are likely to be 
overwhelmed by weed growth rate (Ruiz et al., 
2021; Lee, 2001; Mailu, 2001; Timberlake and 
Chidumayo, 2004). The recent emergence and 
rapid spread reported in local news outlets 
further corroborate the urgency depicted in the 
results (Daily News, 2025; The Citizen, 2025). 
The results revealed that the expansion of 
S.molesta in the Gulf of Mwanza has profound 
potential ecological and socioeconomic 
consequences. The results are consistent with 
impacts documented both at global and regional 
scales, including the Lake Victoria Basin itself 
(Mailu, 2001; Martin et al., 2018). Ecologically, the 
formation of dense surface mats drastically 
reduces light penetration into the water column 
(Everitt et al., 2008). This inhibits photosynthesis 
by phytoplankton and submerged native 
macrophytes, disrupting the base of the aquatic 
food web and leading to loss of primary 
productivity (Everitt et al., 2008). Furthermore, 
mats impede oxygen diffusion from the 
atmosphere into the water, while decomposition 
of the large plant biomass consumes dissolved 
oxygen (Everitt et al., 2008). This combination 
frequently leads to hypoxic or anoxic 
conditions(Crespo et al., 2020; Segurado et al., 
2021), particularly beneath dense mats, which 
stress or kill fish and aquatic invertebrates 
(Herbert et al., 2024). Such conditions can also 
alter water chemistry, potentially lowering the pH 
(Friesen et al., 2021) and increasing the 
concentrations of substances such as hydrogen 
sulfide (Everitt et al., 2008). The overall result is a 
significant reduction in aquatic biodiversity, as 
native species are outcompeted, displaced, or 
unable to survive in altered habitats (Herbert et 
al., 2024). 
The socioeconomic ramifications for 
communities around the Gulf of Mwanza are 

equally severe. Lake Victoria supports vital 
fisheries, provides transport routes, and supplies 
water for domestic and agricultural use (Mabula 
et al., 2023). S.molesta infestation directly 
threatens these services. Thick mats physically 
obstruct navigation, impeding fishing boats, 
transport ferries (as indicated by the ferry line 
hotspot), and access to water(Mabula et al., 2023; 
Mailu, 2001). Recent reports from Mwanza 
confirm that ferry services have already been 
affected (Daily News, 2025; The Citizen, 2025). 
Fisheries are particularly vulnerable; mats 
entangle fishing gear, block access to fishing 
grounds, reduce fish populations through habitat 
degradation and oxygen depletion, and can lead 
to significant reductions in catch and income for 
fishing communities (Daily News, 2025; The 
Citizen, 2025). Fish farming operations are also 
directly affected, with mats surrounding cages 
preventing feeding and potentially causing fish 
death due to poor water quality (The Citizen, 
2025). While not directly toxic, mats can also 
create stagnant water conditions suitable for 
breeding disease vectors, such as mosquitoes, 
and harbour other hazardous organisms. The 
cumulative economic losses associated with 
S.molesta infestations, encompassing damage to 
fisheries, transport disruption, control costs, and 
impacts on tourism and water supply, can be 
substantial(Mailu, 2001). These impacts are 
likely to disproportionately affect local 
communities that depend directly on the lake's 
resources for their livelihood and sustenance 
(The Citizen, 2025). The combination of direct 
interference (gear entanglement, blocked access) 
and indirect effects (habitat degradation, oxygen 
depletion) creates a synergistic negative pressure 
on the Gulf of Mwanza fishery, threatening both 
the resource base and livelihoods dependent 
upon it (Daily News, 2025). 

4.2. Spatial Patterns and Potential Drivers of 
Invasion Hotspots 

The identification of statistically significant 
hotspots near Kigongo-Busisi and along the ferry 
line provides a crucial spatial focus for 
understanding and managing S.molesta invasion. 
The non-uniform distribution indicated by 
hotspot analysis suggests that specific local 
factors, rather than just broad-scale conditions, 
drive the most intense areas of infestation. Such 
factors could include surface wind, flowing water, 
leaf water accessibility, growth forms of S. 
molesta, and nutrient supply (Li et al., 2018).  
Understanding these drivers is the key to 
developing effective targeted interventions. 
Several factors, often acting in concert, are likely 
to contribute to hotspot formation.  
S.molesta thrives in nutrient-rich waters, 
particularly those high in nitrogen and 
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phosphorus (Wahl et al., 2021). Hotspots may 
therefore coincide with areas receiving 
significant nutrient inputs from sources, such as 
agricultural runoff, discharge from settlements or 
industries, or inadequate waste management 
practices(Gherardi , 2007; Room, 1994). Reports 
from Mwanza explicitly link the current invasion 
to agricultural runoff and human activities near 
the shore (Daily News, 2025; The Citizen, 2025). 
The Kigongo-Busisi area, situated near the 
shoreline and potentially associated with 
significant infrastructure development (ferry 
terminal and bridge construction), could be 
particularly susceptible. Such locations often 
represent a confluence of potential drivers: land-
based nutrient runoff, altered water flow or 
sheltered conditions created by shoreline 
modifications or structures, and increased human 
activity, including boat traffic (Daily News, 2025). 
Physical factors, such as water currents and wind, 
also play a crucial role in the distribution of free-
floating plants, such as S.molesta(Martin et al., 
2018; Wahl et al., 2020). Mats can be passively 
transported and accumulate in sheltered bays, 
eddies, or shorelines, potentially contributing to 
the high densities observed in the Kigongo-Busisi 
hotspot (The Citizen, 2025; Wanda et al., 2021). 
Wind direction is noted as a factor in the spread 
within the Gulf of Mwanza (Daily News, 2025; The 
Citizen, 2025). Human activity is another major 
driver, through both nutrient pollution and direct 
dispersal. Boat traffic is a well-documented 
vector for the spread S.molesta fragments (Everitt 
et al., 2008; Wahl et al., 2020). The hotspots 
identified along the ferry line strongly suggest 
such a mechanism. This may represent a 'vector 
corridor' where constant ferry movement not 
only transports fragments to new locations along 
the route, but also continuously fragments 
existing plants through propeller action, 
potentially creating ideal conditions for 
regeneration and maintaining high densities 
along this linear feature (The Citizen, 2025). The 
initial introduction points of the weed into the 
Gulf are likely linked to human activities, such as 
aquarium trade or accidental transport (Everitt et 
al., 2008; Wahl et al., 2020). may also influence 
the initial locations of the spread and the 
subsequent hotspot development. 

5. Conclusion and Recommendations 

5.1. Conclusion 
This study employed remote sensing techniques 
and spatial analysis to assess the temporal 
dynamics and identify spatial hotspots of invasive 
S.molesta in the Gulf of Mwanza, Lake Victoria. 
The results revealed an accelerated trend of 
S.molesta expansion (2020 and 2022), with 
estimations indicating a dramatic increase in its 
coverage by 2025, implying a potential leading to 

significant displacement of open water habitats. 
The trajectory of S.molesta expansion has 
highlighted a rapidly escalating threat to the 
ecological integrity and socio-economic usability 
of the Mwanza Gulf, consistent with recent 
reports of weed emergence and impacts in the 
area.  
Furthermore, the Getis-Ord Gi* hotspot analysis 
successfully identified statistically significant 
spatial clusters within the 2025 S.molesta 
distribution. Significant hotspots, indicating 
exceptionally high invasion density, were located 
near the edge of Kigongo-Busisi and along the 
main ferry line. These findings move beyond 
generalized concerns by providing quantitative, 
spatially explicit evidence of the invasion's 
potential scale and pinpointing specific high-
priority areas where ecological impacts are likely 
most severe and intersect critically with human 
activities, such as transport and shoreline 
development. Therefore, implementing targeted 
management and continued monitoring efforts 
for. S. molesta invasion in the Gulf of Mwanza is 
paramount to mitigating its likely adverse 
consequences.  
5.2. Recommendations 
Based on the findings of this study, the following 
recommendations are proposed for management, 
monitoring, and future research to address the 
proliferation of S. molesta in the Gulf of Mwanza: 
Implement Targeted Management in Hotspot 
Areas: The strategic allocation of management 
resources should be prioritized for the hotspots 
identified near Kigongo-Busisi and along the 
primary ferry route. A comprehensive, integrated 
control plan is crucial for these high-density areas 
to prevent further propagation and mitigate 
immediate impacts on navigation and aquatic 
ecosystems. Although mechanical removal is a 
viable initial response, as evidenced by recent 
efforts, this approach should be viewed as a 
component of a broader, more sustainable 
management strategy.  
Assess Biological and Chemical Control Options: 
It imperative that a thorough feasibility study is 
conducted to introduce host-specific biological 
control agents. The Salvinia weevil (Cyrtobagous 
salviniae), which has a well-documented history 
of success in controlling infestations in other 
regions, is the primary candidate for 
consideration. However, this process must be 
preceded by a rigorous assessment of the 
potential non-target ecological impacts within 
the Lake Victoria ecosystem. Concurrently, the 
judicious use of approved aquatic herbicides 
should be evaluated for rapid response scenarios, 
provided there is strict adherence to all 
environmental and regulatory protocols.  
Mitigate the Drivers of Proliferation: A 
sustainable, long-term solution necessitates 
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addressing the underlying factors that contribute 
to hotspot formation, particularly nutrient 
pollution. Therefore, authorities should prioritize 
the identification and control of eutrophication 
sources such as agricultural runoff and untreated 
sewage effluent entering the lake. The 
enforcement of existing environmental policies, 
including the 60-meter buffer zone regulation, is 
paramount to reducing the nutrient loads that 
fuel the proliferation of invasive macrophytes.  
Enhance Monitoring and Early Detection 
Systems: The continuation and enhancement of 
remote sensing-based monitoring programs are 
critical for tracking the spatial and temporal 
dynamics of S. molesta infestation. The consistent 
use of satellite data, such as those from the 
Sentinel-2 mission, facilitates frequent and 
broad-scale coverage of the study area. 
Furthermore, increasing the frequency of 
monitoring during peak growing seasons is 
essential to enable early detection and a rapid, 
evidence-based management response to new or 
expanding clusters.  
Areas for Further Research: Future research 
efforts should focus on validating 2025 
distribution projections and hotspot locations 
through direct field surveys. Detailed field studies 
should be conducted within hotspot and non-
hotspot areas to definitively identify the primary 
environmental drivers (e.g., water nutrient 
concentrations, currents, and shoreline 
structure) of the observed spatial clustering. 
Finally, any consideration of biological control 
must be supported by rigorous, localized host-
specificity testing and ecological risk assessment 
before any introductions are made. 
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